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Hamiltonian Derivation of a Detailed Fluctuation
Theorem
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We analyze the microscopic evolution of a system undergoing a far-from-equi-
librium thermodynamic process. Explicitly accounting for the degrees of
freedom of participating heat reservoirs, we derive a hybrid result, similar in
form to both the fluctuation theorem and a statement of detailed balance. We
relate this result to the steady-state fluctuation theorem and to a free energy
relation valid far from equilibrium.
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I. INTRODUCTION

The fluctuation theorem refers collectively to a number of theoretical results
in the field of nonequilibrium statistical mechanics, which are striking
because they are valid far from thermal equilibrium. Following the original
numerical discovery by Evans, Cohen, and Morriss, (1) a transient fluctua-
tion theorem (applicable to systems driven away from an initial state of
equilibrium), and a steady-state fluctuation theorem (for systems in a non-
equilibrium steady state), were derived by Evans and Searles, (2) and by
Gallavotti and Cohen, (3) respectively, for systems evolving under deter-
ministic but non-Hamiltonian equations of motion. These results have
stimulated considerable research, (4�19) in which the fluctuation theorem has
been generalized (in particular to stochastic evolution) and related to linear
response theory, specific examples have been studied, and the relation
between the transient and steady-state fluctuation theorems has been dis-
cussed.
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The steady-state version of the fluctuation theorem can be written as:
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where kB is the Boltzmann constant, and p{(_� ) is the probability distribu-
tion of observing an average entropy production rate _� over a time interval
of length {. The distribution is defined with respect to an ensemble of tra-
jectory segments of duration {, sampled while the system in question
evolves in a nonequilibrium steady state.

Physically, maintaining a system in a nonequilibrium steady state
requires the participation of one or more heat reservoirs, for instance to
absorb the heat generated by shear forces, or to maintain boundaries of the
system at different temperatures. Derivations of the fluctuation theorem
which have appeared in the literature (whether pertaining to systems driven
away from equilibrium, or to those in a nonequilbrium steady state) have
discussed a variety of thermostating schemes, both deterministic(1�14) and
stochastic, (15�19) to model the presence of reservoirs. Many of these schemes
originated as numerical strategies for simulating the microscopic evolution
of a system in thermal contact with a heat reservoir, without simulating the
huge number of degrees of freedom making up the reservoir itself. The very
fact that the fluctuation theorem seems to be independent of the thermo-
stating scheme lends it considerable support. Indeed, Maes(19) has argued
on quite general grounds that the fluctuation theorem can be understood
as a Gibbs property of space-time histories; see also ref. 20 for illustrative
examples.

Recently, Crooks(18) has shown that the fluctuation theorem is closely
related to another set of results(21�27)��also valid far from equilibrium��
which relate the free energy difference between two equilibrium states of a
system, to the external work performed on the system during a non-
equilibrium process from one state to the other.

The purpose of the present paper is to derive a result similar to the
fluctuation theorem, by explicitly including the degrees of freedom of heat
reservoirs in the analysis, and assuming Hamiltonian evolution at the
microscopic level. This approach corresponds closely to the situation pre-
sent in a laboratory experiment, where the ``thermostating'' is precisely the
result of interactions between the system and the innumerable degrees of
freedom which constitute its environment. We will argue that, when all
microscopic degrees of freedom are taken into account, then there emerges
a ``detailed fluctuation theorem'' (Eq. (4) below), valid for finite times {,
and expressed without reference to steady states.
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A Hamiltonian treatment of nonequilibrium processes, similar in spirit
to that taken here, was carried out by Bochkov and Kuzovlev(28, 29)

(though with less emphasis on a distinction between the ``system of inter-
est'' and its ``environment''). The central result derived below, however, is
new, as is the connection to the fluctuation theorem. More recently,
Eckmann, Pillet, and Rey-Bellet(30) have introduced and studied an exactly
solvable, Hamiltonian model of a system (a chain of nonlinear oscillators)
coupled to two heat reservoirs at different temperatures. It would be very
interesting to establish the precise relation between the results which they
obtain for their model��especially in connection with the nonequilibrium
steady state��and the approach taken in Section IV of the present paper.

In the following two sections, the central result is stated and derived.
While this result does not explicitly refer to a nonequilibrium steady state,
we argue in Section IV that, under appropriate circumstances, it leads to
the steady-state fluctuation theorem. In Section V we show that the non-
equilibrium free energy relation of refs. 21�27 also follows from the central
result of the present paper. We end with a discussion in Section VI.

II. STATEMENT OF CENTRAL RESULT

Suppose we have the following ingredients at our disposal:

1. a finite, classical system of interest, �,

2. a number of heat reservoirs, %1 , %2 ,..., %N ,

3. and, possibly, a work parameter, *.

The work parameter is some degree of freedom which we control
externally, for instance an external field, and which interacts directly with
� (but not with the reservoirs). The reservoirs are also finite, classical
systems, prepared ahead of time at various temperatures. We suppose that
we can establish or break thermal contact between our system of interest
and any of the reservoirs, as we choose. Finally, we assume that, at the
most fundamental level of description, the system and reservoirs are com-
posed of a large number of microscopic degrees of freedom, and that the
collection of these obeys Hamiltonian evolution.

Our ability to directly manipulate *, and to make or break contact
with the reservoirs, allows us to subject our system of interest to a variety
of thermodynamic processes. We will take the word process to be syn-
onymous with an explicit prescription spelling out ``what we do to the
system'' at the macroscopic level, using the tools at our disposal (the work
parameter and heat reservoirs). More precisely, a process 6 is defined by
a set of instructions specifying:
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1. the temperatures (T1 ,..., TN) at which to prepare the reservoirs,

2. when to establish and�or break thermal contact between � and
any of the % 's, and

3. the time-dependence of the work parameter, *(t).

We will refer to items 2 and 3 as the protocol. We will restrict our-
selves to processes occurring over a finite interval of time, [0, {], and will
say that a process is static if the work parameter and thermal contacts are
constant over the course of the process. Note that a process is defined
without reference to the preparation of the system of interest itself.

Having introduced the notion of a process to specify ``what we do
to �'' at the macroscopic level, let us now turn our attention to the
microscopic response of the system of interest and reservoirs. A complete
description of this response is provided by a trajectory 1 (t), detailing the
(Hamiltonian) evolution of all participating degrees of freedom. We will,
however, be interested in a less complete descriptions consisting of: the
microscopic history of � itself, and the net entropy generated, 2S, over the
course of the process. By the former, we mean a trajectory z(t) specifying
the evolution of the microstate of the system of interest (the position and
momentum of each constituent degree of freedom), from t=0 to t={. By
entropy generated, we mean the quantity

2S#& :
N

n=1

Qn

Tn
(2)

where Qn denotes the net heat absorbed by � from the n th reservoir, over
the course of the process. We justify the nomenclature by noting that, at
the macroscopic level of description, &Qn �Tn corresponds to the net
change in the entropy of the n th reservoir. Thus, 2S can be viewed as the
change in the entropy of the environment of � (the collection of reservoirs),
which we abbreviate to ``entropy generated.'' (See also the definition of the
rate of entropy production introduced in ref. 30.)

Note that both z(t) and 2S can be obtained from the complete
microscopic description, 1 (t): the former, by projecting out the reservoir
degrees of freedom; the latter, by using the initial and final conditions 1 (0)
and 1 ({) to compute the net change in the internal energy of each reser-
voir. (See Eq. (8) below, and commentary in Section VI).

Because the system of interest interacts with the reservoirs, the
microscopic evolution of � itself is not deterministic. Rather, an initial
microstate zA determines a statistical ensemble of possible realizations, each
characterized by a particular history z(t), and a particular value of entropy
generated 2S. This is the ensemble of realizations which we would obtain
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by endlessly repeating the same process, always initializing � in the
microstate zA ; the difference from one realization to the next arises solely
from the different initial conditions sampled for the reservoirs. From this
ensemble, let us imagine constructing the statistic

P(zB , 2S | zA) (3)

which is the joint probability distribution of obtaining a final microstate
z({)=zB , and an entropy generated 2S, conditional on the initial micro-
state z(0)=zA . This joint, conditional probability distribution P will be the
object of central interest in this paper. This is admittedly a somewhat
peculiar quantity to investigate. No attempt will be made to motivate our
interest in this statistic other than that ``it works,'' in the sense that con-
sideration of P(zB , 2S | zA) leads to the neat result expressed by Eq. (4)
below.

Let us now introduce a final piece of notation. For an arbitrary pro-
cess 6+, let its time-reversed counterpart, 6 &, denote the process obtained
by using the same set of reservoir temperatures, but carrying out the
protocol of 6 + in reverse order (reversing the time-dependence of both
the work parameter and the thermal contacts established and broken).
We will, quite arbitrarily, refer to 6+ as the ``forward'' process and 6&

as the ``reverse'' process. When discussing the conditional probability
P(zB , 2S | zA), computed for two processes 6+ and 6& related by time-
reversal, the notation P+ and P& is used to distinguish between the two
cases.

The central result of this paper then asserts that the probability dis-
tributions P+ and P& satisfy the following relation:

P+(zB , +2S | zA)
P&(z*A , &2S | z*B)

=exp(2S�kB) (4)

where the asterisk (*) denotes a reversal of momenta: (q, p)*=(q, &p). To
obtain some intuition for what this result says, imagine filming the evolu-
tion of the system, work parameter, and reservoirs during one realization
of the process 6+, as the microstate of � evolves from zA to zB and the
entropy generated is 2S. Now imagine running the film backward; you will
then see a realization of the process 6&, with � evolving from z*B to z*A ,
and entropy generation &2S. Equation (4) thus relates the conditional
probability of observing one set of events (zA � zB , +2S) during a given
process, to that of observing the time-reversal of those events (z*B � z*A ,
&2S) during the time-reversed process: it states that the ratio of these two
probabilities is just the exponent of the entropy generated, 2S, in units
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of kB . For a static thermodynamic process, we have 6 +=6 &, and there-
fore we can drop the subscripts + and & appearing in Eq. (4).

Equation (4) is a hybrid result, akin both to the fluctuation theorem
(through dependence on 2S), and to a statement of detailed balance
(because of the appearance of the initial and final microstates of �); for this
reason we refer to it as a detailed fluctuation theorem.

Note that if 2S>0, then the conditional probability appearing in the
numerator is greater than that in the denominator; if 2S<0, the opposite
is true. This makes intuitive sense: of the two scenarios, the one which
remains obedient to the second law by generating positive entropy is more
likely than its disobedient twin, by a factor exponential in the entropy
generated.

The proof of Eq. (4) will follow directly from the assumption that
evolution in the full phase space (including the degrees of freedom of
�, %1 ,..., %N) is deterministic and Hamiltonian. For a process 6, the statisti-
cal ensemble of realizations corresponding to a particular initial microstate
zA for the system of interest is then defined operationally: it is the ensemble
obtained by initializing � in the microstate zA , then sampling the initial
conditions of the reservoirs (y0

1 ,..., y0
N) from canonical distributions at the

specified temperatures (T1 ,..., TN). Given zA , the sampled values of
(y0

1 ,..., y0
N) uniquely determine the subsequent evolution of all degrees of

freedom, 1 (t). The probability distribution of obtaining a given realization,
conditional on a given microstate zA for �, then reduces to that of sampl-
ing the appropriate initial microstates of the reservoirs.

III. DERIVATION

To carry out the derivation of Eq. (4), we begin by introducing notation
and spelling out assumptions, starting with the classical approximation: all
quantal effects are ignored.

The system of interest, �, is taken to have a finite number of degrees
of freedom, and its instantaneous microstate is described by a point
z=(q, p) in the phase space of �, with the usual assignment of q to denote
configurational variables, and p the associated momenta. At any instant in
time, the internal energy of � is given by a Hamiltonian H �

* (z), parame-
trized by the current value of the work parameter *.

Next, assume that each heat reservoir %n is itself a classical system with
a finite number of degrees of freedom, whose microstate is described by a
point yn in the phase space associated with that reservoir. We do not
assume the reservoirs to be physically identical, so the dimensionalities of
the yn 's may differ. The internal energy of the nth reservoir is given by a
Hamiltonian H %

n(yn).
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Finally, let h int
n (z, yn) denote a weak coupling term between the system

of interest and the nth reservoir. As discussed below, thermal contact
between � and %n can be established or broken by turning this term ``on''
and ``off,'' using parameters cn(t).

For simplicity of presentation assume time-reversal invariance (``no
magnetic fields'') for these Hamiltonian terms:

H �
* (z*)=H �

* (z), H %
n(yn*)=H %

n(yn), h int
n (z*, yn*)=h int

n (z, yn) (5)

The vector

1=(z, Y)=(z, y1 ,..., yN) (6)

specifies the instantaneous state of all degrees of freedom involved, where
Y=(y1 ,..., yN) denotes the collective microstate of the N reservoirs. The
evolution of 1 (t) is taken to be deterministic, and governed by a
Hamiltonian

H(1, t)=H �
*(t)(z)+ :

N

n=1

H %
n(yn)+ :

N

n=1

cn(t) h int
n (z, yn) (7)

Here *(t) denotes the time-dependence of the work parameter, and the
cn(t)'s take on values of 0 or 1, which can also change with time. At a given
time t, if cn(t)=1, then this indicates that the system of interest is in ther-
mal contact with the nth reservoir at that time; when cn(t)=0, � and %n

are not in contact. (More generally, we could let the cn 's take on a con-
tinuous range of values, allowing the thermal contacts to be turned on and
off smoothly rather than abruptly. This modification would have no effect
on the analysis.)

The collection [*, c� ]#[*, c1 ,..., cN] represents the ``tool-kit'' available
for externally manipulating the system of interest. The protocol for a given
process, 6, is then just a particular prescription for doing so: it is syn-
onymous with a specific set of functions of time, [*(t), c� (t)], instructing us
exactly how to manipulate the work parameter and thermal contacts over
a time interval [0, {]. This protocol uniquely specifies the time-dependence
of the Hamiltonian function H(1, t), since that time-dependence enters
only through *(t) and c� (t). We will use H6 (1, t) to denote the time-
dependent Hamiltonian corresponding to a particular process 6. If the
protocol for a process 6 + is [*(t), c� (t)], then that of its time-reversed
counterpart 6 & is given by [*({&t), c� ({&t)].

While the time-dependence of the parameters [*, c� ] is controlled
externally, the participating dynamical degrees of freedom 1=(z, y1 ,..., yN)
evolve under Hamilton's equations, as determined by H6 (1, t). Thus,
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initial conditions 1 (0) uniquely determine a trajectory 1 (t), which chroni-
cles the microscopic history of all degrees of freedom. From this trajectory,
as mentioned earlier, we can extract both the microscopic history of the
system of interest, z(t) (by projecting out the reservoir variables Y), and
the net heat absorbed by � from each of the reservoirs. The heat absorbed
by � from a particular reservoir is equal to the net decrease in the internal
energy of that reservoir:

Qn=H %
n(yn(0))&H %

n(yn({)) (8)

From the Qn 's we in turn compute the entropy generated (Eq. (2)).
We note that, if 1+(t) is a microscopic realization of a process 6+,

then 1&(t)#1*+({&t) is a realization of the reverse process 6 &. This
follows from the assumption of time-reversal invariance: if 1+(t) satisfies
Hamilton's equations for the forward process, then 1&(t) will do so for the
reverse.

The reservoirs, as mentioned, are initially prepared at specified tem-
peratures, T1 ,..., TN . We take this to imply that their initial microstates
y0

n#yn(0) are sampled from canonical ensembles. This defines the following
probability distribution for the collection of initial reservoir conditions:

p(Y0)=N&1 `
N

n=1

exp[&H %
n(y0

n)�kBTn] (9)

where N(T1 ,..., TN) is a product of partition functions.
Finally, for a process 6+ and a set of initial conditions 1 in the full

phase space, let

1� t
+(1 )#(ẑ t

+(1 ), Y� t
+(1 )) (10)

denote the point in phase space reached after time t, and let 2S� +(1 )
denote the net entropy generated over the entire realization of the process
(from t=0 to t={). The carats emphasize that 1� t

+ , ẑ t
+ , Y� t

+ , and 2S� + ,
are viewed as functions of the initial conditions 1. For the time-reversed
process, we adopt the same notation, with an obvious change in subscript
(1� t

& , ẑ t
& , etc.)

All the pieces needed to derive Eq. (4) are now in place. We begin with
a formal expression for the joint, conditional probability distribution in
which we are interested:

P+(zB , 2S | zA)=| dY p(Y) $[zB&ẑ{
+(zA , Y)] } $[2S&2S� +(zA , Y)]

(11)
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Using the identity ẑ0
+(z, Y)=z, we rewrite this as:

P+(zB , 2S | zA)

=| d1 p(Y) } $[zA&ẑ0
+(1 )] $[zB&ẑ{

+(1 )] } $[2S&2S� +(1 )] (12)

where 1#(z, Y). Now let 1 $=(z$, Y$)=1� {
+(1 ) denote the final point in

the full phase space, for a realization of 6+ launched from initial condi-
tions 1. For a given 1=(z, Y), we can rewrite p(Y) as:

p(Y)=
p(Y)
p(Y$)

p(Y$)=exp[2S� +(1 )�kB] p(Y$) (13)

using Eqs. (2), (8), and (9), which leads to

P+(zB , 2S | zA)

=e2S�kB | d1 p(Y$) $[zA& ẑ0
+(1 )] $[zB&ẑ{

+(1 )] } $[2S&2S� +(1 )]

(14)

Here p(Y$) is not to be interpreted as ``the probability distribution of final
reservoir conditions,'' but rather as the function p defined by Eq. (9),
evaluated at Y$=Y� {

+(1 ). Since 1 $ is reached from 1 by time evolution
under the process 6 +, and since we have assumed time-reversal invariance
(Eq. (5)), it follows that, if we reverse the final momenta and launch a
realization of 6 & from initial conditions 1 $*, then we will obtain the time-
reversed image of the original realization: 1� t

&(1 $*)=[1� {&t
+ (1 )]*. From

this it follows that

ẑ t
&(1 $*)=[ẑ{&t

+ (1 )]*, 2S� &(1 $*)=&2S� +(1 ) (15)

This allows us to rewrite Eq. (14) as:

P+(zB , 2S | zA)=e2S�kB | d1 p(Y$*) $[z*A&ẑ{
&(1 $*)]

_$[z*B&ẑ0
&(1 $*)] } $[2S+2S� &(1 $*)] (16)

where we have used the fact that p(Y$)= p(Y$*) (Eqs. (5) and (9)). Finally,
since the integrand is expressed in terms of 1 $*, which is an invertible func-
tion of 1 (defined by time evolution, followed by a reversal of momenta),
let us change the variables of integration from 1 to 1 $*. The Jacobian for
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this change of variables is unity (by Liouville's theorem), so we simply
replace d1 by d1 $* in Eq. (16). But then we can drop the prime and
asterisk altogether (since 1 $* is just a variable of integration) to get:

P+(zB , 2S | zA)

=e2S�kB | d1 p(Y) $[z*A&ẑ{
&(1 )] $[z*B&ẑ0

&(1 )] } $[2S+2S� &(1 )]

(17)

=e2S�kB | dY p(Y) $[z*A&ẑ{
&(z*B , Y)] } $[2S+2S� &(z*B , Y)] (18)

=e2S�kBP&(z*A , &2S | z*B) (19)

which is the desired result.
The origin of the exponential term in Eq. (4) can be understood infor-

mally, as follows. Given a ``forward'' realization 1+(t), and its time-reversed
image 1&(t), e2S�kB is the probability distribution for sampling the reser-
voir initial conditions corresponding to the forward realization, relative to
those corresponding to the reverse realization, from canonical distributions:
e2S�kB= p(Y)�p(Y$*). The probability P+ appearing in the numerator of
Eq. (4) is a sum of contributions from all realizations for which � evolves
from zA to zB and the entropy generated is +2S; and similarly for P& .
The two sets of realizations are in one-to-one correspondence with each
other: for every 1+(t) contributing to P+ there is a time-reversed realiza-
tion 1&(t) contributing to P& . Since, for every such pair of realizations,
the ratio of probability distributions for sampling the associated initial
reservoir conditions is e2S�kB, the ratio of the two sums (P+ to P&) is equal
to this exponential.

We end this section by pointing out, that a result similar to Eq. (4)
can be derived for the statistic

P(z1 , z2 ,..., zM , 2S | z0), M�1 (20)

which is the joint probability distribution that � will evolve through the
sequence of points z1 , z2 ,..., zM , at times t1 , t2 ,..., tM , where tm=m{�M, and
that the entropy generated will be 2S, given z(0)=z0 . Formally, for a
process 6+,

P+(z1 } } } zM , 2S | z0)

=| dY p(Y) $[2S&2S� +(z0 , Y)] `
M

m=1

$[zm& ẑ tm
+(z0 , Y)] (21)
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A calculation similar to the one presented above then gives:

P+(z1 , z2 } } } zM , +2S | z0)
P&(z*M&1 } } } z0*, &2S | z*M)

=exp(2S�kB) (22)

Note that the discrete trajectory implied in the denominator (z*M � } } } � z0*)
is the time-reversed image of the one in the numerator (z0 � } } } � zM).
Equation (4) is just a special case, M=1, of Eq. (22). The latter remains
valid as well in the opposite limit, M � � (with { fixed), in which case the
entire history of � is specified. We then write, in suggestive notation,

P+[z+(t), +2S | z+(0)]
P&[z&(t), &2S | z&(0)]

=exp(2S�kB) (23)

where z&(t)=z*+({&t).
For an isolated system (N=0) perturbed by external forces of finite

duration, we have 2S=0, by definition. Thus, by Eq. (22), the conditional
probability distribution of observing the (isolated) system evolve through
a given sequence of points during the process 6+, is equal to that of
observing it to pass through the time-reversed sequence during 6&. This
probability distribution will be a product of $-functions: either the unique
trajectory launched from z0 goes through the sequence z1 ,..., zM , or it does
not. In this case (N=0), Eq. (23) is essentially equivalent to Eq. (7) of
ref. 28. (A technical point of difference is that Bochkov and Kuzovlev
consider the unconditional probability of observing a given realization,
assuming the system of interest begins in equilibrium, for both the forward
and the reverse realization; the exponential factor which they obtain is a
ratio of probabilities of sampling microstates of � itself from a given equi-
librium distribution.)

For a single heat reservoir (N=1), Eq. (22) is similar to Eq. (9) of
ref. 23. The main difference is that in Crooks' formulation the evolution of
the system of interest is explicitly taken to be a Markov process, occurring
in discrete steps. Here, by contrast, the microstates zm represent ``snap-
shots'' of � taken at equally-spaced time intervals during continuous-time
evolution, and in general this sequence of states cannot be viewed as a
Markov chain.

Evans and Searles(2) have also derived the (transient) fluctuation
theorem by comparing the probabilities of sampling initial conditions of
pairs of finite-time trajectories, one the time-reversed image of the other.
In their approach, the system of interest evolves under deterministic but
non-Hamiltonian equations of motion, to model the presence of a heat
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reservoir. They find, as above, that the probability measure of a given
trajectory, relative to that of its time-reversed twin, is the exponent of the
entropy generated (where the latter is identified with phase space contraction).

IV. RELATION TO THE STEADY-STATE FLUCTUATION
THEOREM

In terms of the average entropy generation rate, _� #2S�{, Eq. (4) can
be rewritten as

1
{

ln
P+(zB , +_� { | zA)
P&(z*A , &_� { | z*B)

=+_� �kB (24)

which is reminiscent of the steady-state fluctuation theorem, Eq. (1).
However, the correspondence is not exact: Eq. (1) applies explicitly to a
nonequilibrium steady state, contains the limit { � �, and exhibits no
dependence on initial and final microstates of the system of interest, all in
contrast to Eq. (24). In this section we pursue the relationship between the
detailed fluctuation theorem of this paper and the steady-state fluctuation
theorem.

Rather than aiming at complete generality, we will focus on a specific
physical situation which might exhibit a nonequilibrium steady state in the
appropriate limit, with the expectation that the line of reasoning applied
here can serve as a model for other examples. In Fig. 1, the system of inter-
est is a fluid composed of particles of ``type A,'' inside a finite cylindrical
container of length l. The reservoirs are fluids of ``type B '' particles,
contained in two cylinders of length L abutting the ends of �. Let &�

denote the number of particles constituting the system of interest, and let
&%=&1=&2 denote the number in either reservoir. Assume that the forces
between particles are pairwise, unaffected by the barriers between the cylin-
ders, and have a short interaction range r<l. Also assume that all particles
scatter elastically off the container walls.

Given this set-up, one cannot expect the system to reach a non-
equilibrium steady state, except possibly in the limit of infinitely large reser-
voirs. We will now argue, quantitatively though not rigorously, that if �
indeed reaches a steady state in this limit, and if fluctuations in the entropy
production in that state are characterized by finite correlation times, then
Eq. (4) (or 24) implies the steady-state fluctuation theorem.

The system of interest and reservoirs depicted in Fig. 1 are governed
by a Hamiltonian of the form given in Eq. (7), with

88 Jarzynski



File: 822J 244213 . By:XX . Date:11:01:00 . Time:08:53 LOP8M. V8.B. Page 01:01
Codes: 2451 Signs: 1352 . Length: 44 pic 2 pts, 186 mm

Fig. 1. Three interacting fluids. See text for details.

H�(z)= :
&�

i=1

p[i] 2

2mA
+ :

i< j

VAA(q[i], q[ j])+b.c. (25)

H %
n(yn)= :

&%

i=1

p[i] 2
n

2mB
+ :

i< j

VBB(q[i]
n , q[ j]

n )+b.c. (26)

h int
n (z, yn)= :

&�

i=1

:
&%

j=1

VAB(q[i], q[ j]
n ) (27)

where the index n=1, 2 labels the reservoirs. Here, the microstates of the
system of interest and reservoirs are denoted by

z=(q[1], p[1],..., q[&�], p[&�]) (28)

yn=(q[1]
n , p[1]

n ,..., q[&%]
n , p[&%]

n ), (29)

Vxy represents the short-range interaction potential between particles of
type x and y, and ``b.c.'' denotes boundary conditions, implying elastic
reflection off the walls of the containers. There is no work parameter, and
thermal contact between the system of interest and the reservoirs is always
``on'' (cn=1).

Let us now choose two temperatures T1 and T2 to be associated with the
reservoirs %1 and %2 . We can then subject the system of interest to a (static)
thermodynamic process, by starting with � in some initial microstate zA ,
sampling the initial microstates (y0

1 , y0
2) of the reservoirs from canonical

distributions at the chosen temperatures, and letting the entire system
evolve for a time { under the Hamiltonian H=H�+�n H %

n+�n h int
n . For

this process, we can construct the statistic P|
{ (zB , 2S | zA). This is the joint,

conditional probability distribution defined in Section II, but with the
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dependence on the duration of the process, {, and the size of the reservoirs,
|#(L, &%), explicitly stated.

The detailed fluctuation theorem, Eq. (4), then tells us that

P|
{ (zB , +2S | zA)

P|
{ (z*A , &2S | z*B)

=exp(2S�kB) (30)

for this static process. Let us now change variables, from 2S to _� =2S�{,
by defining

p|
{ (zB , _� | zA)#P|

{ (zB , _� { | zA) } {, (31)

the joint probability distribution of observing, after a time {, a final micro-
state zB , and an average entropy generation rate _� , conditional on an
initial microstate zA .

We view p|
{ (zB , _� | zA) as a function of zA , zB , and _� , parametrized by

the values of {, L, and &% . Let us now assume, first, that

p0
{ (zB , _� | zA)# lim

| � �
p|

{ (zB , _� | zA) exists (pointwise) (32)

where ``| � �'' denotes the limit L, &% � �, with the particle density &% �L
held fixed. Thus, we assume that the dynamics of � converges to a well-
defined limit, as we let the reservoirs become infinitely large. Equation (30)
then implies that

1
{

ln
p0

{ (zB , +_� | zA)
p0

{ (z*A , &_� | z*B)
=

_�
kB

(33)

for any finite value of {.
[A bit of care is needed here, since, in the limit | � �, the entropy

generated becomes defined in terms of differences between infinite numbers
(the initial and final energies of %1 and %2). The assumption expressed by
Eq. (32) states that, for any fixed _� , the quantity p|

{ (zB , _� | zA) converges to
a particular value as the reservoirs become increasingly larger; roughly
speaking, even though typical initial and final reservoir energies diverge in
that limit, the energy differences Qn do not. One can heuristically argue
that this is a reasonable assumption, as follows. For a given particle density
and temperature, there ought to be a characteristic ``signal velocity'' v with
which information about the microstate of particles in one region of the
reservoir gets propagated to other regions. If we choose L>>v{, then we
expect the particles at the far end of either reservoir to have negligible
influence on the evolution of �, hence p|

{ (zB , _� | zA) will be unaffected by
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further increases in reservoir size, |. When taking the limit { � � below,
it will be understood that the limit | � � comes first.]

Let us next assume that, under the dynamics imposed by infinitely
large reservoirs, � evolves to a statistical steady state. Let f S(z) denote the
distribution of microstates, and pS

{ (_� ) the probability distribution of
observing an average entropy production rate _� over a time interval of
duration {, in the steady state.2 We further assume that, in the steady state,
fluctuations in the entropy production are characterized by a finite correla-
tion time tc , so that the average entropy production rates measured over
two adjacent time intervals of duration tc can be treated as statistically
independent. Finally, let _� S denote the infinite-time average entropy
production rate (equivalently, the expectation value of the average entropy
production rate over any finite time interval) in the steady state:

lim
{ � �

pS
{ (_� )=$(_� &_� S) (34)

Given these assumptions, we now want to justify replacing the numer-
ator and denominator of Eq. (33) by pS

{ (+_� ) and pS
{ (&_� ), respectively, in

the limit { � �.
As a first step in this direction, we define

p{(zB | zA)#| d_� p0
{ (zB , _� | zA) (35)

and

p{(_� | zA , zB)# p0
{ (zB , _� | zA)�p{(zB | zA) (36)

(We will drop the superscript 0 henceforth, with the understanding that
the limit of infinite reservoirs is assumed in the remainder of this section.)
The former is the probability distribution of observing a microstate zB at
t={, given zA at t=0. The latter is the distribution of average entropy
production rates _� over the interval from t=0 to t={, conditional on an
initial state zA and a final state zB . Note that

lim
{ � �

p{(zB | zA)= f S(zB) (37)
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p|
{ (zB , _� | zA). In the latter, the time interval of duration { is measured from the initial time,

t=0, at which the reservoir microstates are drawn from canonical distributions. In the
former, the interval is measured starting at some moment after the steady state has been
achieved. In both cases, the entropy generated is defined in terms of the net changes in inter-
nal energies of the reservoirs, over the interval in question.



by the assumption that � evolves to a stationary steady state.
Equation (33) now becomes

1
{

ln
p{(zB | zA)
p{(z*A | z*B)

+
1
{

ln
p{(+_� | zA , zB)
p{(&_� | z*B , z*A)

=
_�

kB
(38)

which again is valid for any {. By Eq. (37), the first term on the left will
vanish as { � �. It remains then to show that, in this limit, the numerator
and denominator of the second term can be replaced by pS

{ (+_� ) and
pS

{ (&_� ). It is tempting to argue that the dependence of p{(_� | zA , zB) on the
specified initial and final microstates will vanish as { � �, and therefore

p{(_� | zA , zB) � pS
{ (_� ) (39)

This is true in the sense that both sides of Eq. (39) converge to the same
distribution of values of _� , namely, $(_� &_� S). However, since that limiting
distribution is singular, we cannot simply assume that, for instance, the
ratio of p{(_� | zA , zB) to pS

{ (_� ) at a given value of _� converges to unity as
{ � �. (In general it does not.) Justifying the above-mentioned replace-
ment will therefore require some work.

Let x
�

be a stochastic variable denoting the time-averaged entropy
production rate during an interval of duration tc , when the system is in the
steady state. Thus, the value of x

�
is a value of _� sampled randomly from

the distribution pS
tc
(_� ). Note that (x

�
)=_� S, where angular brackets denote

expectation value. For an interval of duration {=Ktc (where K is a positive
integer) we then have, by our assumption of finite correlations,

pS
{ (_� )=($(_� &X

�
)) (40)

where

X
�

=
1
K

:
K

k=1

x
� k (41)

and the xk 's denote independent samples of the same stochastic variable.
Equation (40) pertains to a system already in the steady state. Let us

write down a similar equation for p{(_� | zA , zB). For { sufficiently large, we
can divide the interval [0, {] into three segments: initial, intermediate, and
final. During the initial segment, the system relaxes to the steady state, and
the influence of the initial state zA is felt statistically: the probability dis-
tribution of values of entropy produced during this segment depends on zA .
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During the intermediate segment, the system is in the steady state, and its
behavior is independent of either zA or zB . During the final segment, the
influence of the assumed final state zB is felt statistically. The amounts of
entropy generated during each of these segments are statistically indepen-
dent of one another. For simplicity, let us assume that the initial and final
segments are both of duration tc , and that the total interval {=Ktc as
above. Then we can write

p{(_� | zA , zB)=($(_� &Y
�

)) (42)

where

Y
�
=

1
K \a

�
+b

�
+ :

K&2

k=1

x
� k+ (43)

where a
�

and b
�

are stochastic variables representing the average entropy
production rate during the initial and final segments, respectively. The
dependence of these on zA and zB is implicit.

Both pS
{ (_� ) and p{(_� | zA , zB) have been reduced to distributions of

averages of K independently drawn samples. In the former case, all K
samples are drawn from the same distribution (Eq. (41)), corresponding to
the steady state. In the latter case, K&2 samples are drawn from that dis-
tribution, and the remaining two (a

�
and b

�
) are drawn otherwise (Eq. (43)).

How do these two distributions compare, in the limit K � � (in which one
would expect the contributions of a

�
and b

�
in Eq. (43) to become negli-

gible)? Introducing c
�
#a

�
+b

�
, we can write

p{(_� | zA , zB)=| dc '(c) pS
{$(_� $) (44)

where '(c)=($(c&c
�
)) is the probability distribution of values of c

�
;

{$={&2tc ; and

_� $=
K_� &c
K&2

(45)

is the entropy generation rate implied for the intermediate segment (of
duration {$), if the rates during the initial and final segments sum to a value
c, and the time-averaged rate for the entire interval [0, {] is _� . Thus, in
Eq. (44) we are integrating over all possible ways of splitting a total
entropy 2S=_� { into a sum of two terms: that generated during initial and
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final segments (ctc), and the remnant (_� ${$) during the intermediate, steady-
state segment.

The distribution of averages of many independently drawn samples is
governed by the theory of large deviations, (31) which predicts that, for a
fixed value of _� ,

pS
{ (_� )= pS

Ktc
(_� ) ��KI"0

?
exp[&KI(_� )] (46)

as {, K � � (tc fixed). Here, I(x) is the rate function (or entropy function)
associated with the stochastic variable x

�
; I"0 is the second derivative of I(x),

evaluated at the minimum of that function, xmin=_� S; and the normaliza-
tion factor is obtained by steepest descent. [The rate function is defined up
to an additive constant. For convenience we have set the value of I to zero
at xmin . Equation (46) implies that, right around that minimum, pS

{ (_� )
tends toward a Gaussian of variance (2KI"0)&1. This is just the central limit
theorem.] We can write down a similar result for pS

{$(_� $), replacing K by
K&2 in Eq. (46), and _� by _� $. Then taking the ratio of the two functions
and considering the limit { � � (equivalently, K � �) gives

lim
{ � �

pS
{$(_� $)

pS
{ (_� )

=exp[2I(_� )+(c&2_� ) I$(_� )] (47)

where I$(x)#dI(x)�dx, and _� $ is given by Eq. (45).
Combining Eqs. (44) and (47), we finally get

lim
{ � �

p{(_� | zA , zB)
pS

{ (_� )
=| dc '(c) exp[2I(_� )+(c&2_� ) I$(_� )]

#R(_� , zA , zB) (48)

where the dependence of R on zA and zB enters through the implicit
dependence of a

�
and b

�
(hence, c

�
) on those microstates of �. We see that,

indeed, the ratio of the two distributions does not generally converge to
unity. However, it does converge (by the arguments just presented, and
assuming the integral in Eq. (48) converges!) to a function which does not
depend on {. Therefore we get, for the second term on the left side of
Eq. (38),

1
{

ln
p{(+_� | zA , zB)
p{(&_� | z*B , z*A)

�
1
{

ln
pS

{ (+_� )
pS

{ (&_� )
+

1
{

ln
R(+_� , zA , zB)
R(&_� , z*B , z*A)

(49)
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as { � �. Combining Eqs. (38) and (49) and dropping the terms which
vanish in that limit, we finally get

lim
{ � �

1
{

ln
pS

{ (+_� )
pS

{ (&_� )
=+_� �kB (50)

which is the steady-state fluctuation theorem (Eq. (1)).
While the arguments presented in this section lack mathematical rigor,

they might point the way toward a proper derivation of Eq. (1) from Eq. (4).
An interesting question is: what additional assumptions are required in
order for the detailed fluctuation theorem to rigorously imply the steady-
state fluctuation theorem? Clearly a carefully crafted assumption about the
existence of a steady state in the limit of infinitely large reservoirs (| � �)
is a sine qua non. If we further assume exponential decay of the autocorrela-
tion function of the instantaneous entropy generation rate, then perhaps
the arguments advanced above could provide the backbone of a rigorous
theorem.

A somewhat different approach has been taken by Eckmann, Pillet,
and Rey-Bellet, (30) in their study of a chain of anharmonic oscillators
coupled to two infinite heat reservoirs. They are able to project out the
reservoir variables, and thus reduce the evolution of the oscillator chain
(supplemented by a set of auxiliary variables) to a Markov diffusion pro-
cess. By studying the generator of this diffusion process, they argue that
their model exhibits entropy production in accordance with the steady-
state fluctuation theorem.

V. RELATION TO FAR-FROM-EQUILIBRIUM FREE ENERGY
RESULTS

Independently of the fluctuation theorem, another far-from-equi-
librium result has been derived and generalized in recent years.(21�27) Con-
sider a system initially in thermal equilbrium with a heat reservoir at
temperature T. Now imagine externally changing a work parameter from
an initial value (say, *=0) to a final value (*=1) over a finite time, while
keeping the system in contact with the reservoir. Once the final value of the
work parameter has been reached, hold the work parameter fixed and let
the system and reservoir re-equilibrate. The system thus begins and ends in
equilibrium states, corresponding to *=0 and *=1, but at intermediate
times is driven out of equilibrium by the finite-rate variation of the work
parameter. (The assumption that the system ends in equilibrium is not
necessary, but makes for a more pleasant presentation.) Now imagine
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repeating this process infinitely many times, always following the same
protocol for varying *, and carefully measuring the external work W per-
formed on the system during each realization. Then the distribution of
values of W obtained from this ensemble of realizations obeys the following
equality, regardless of how gently or violently the parameter was switched
from 0 to 1:

(exp(&;W ))=exp(&;2F ), ;#1�kBT (51)

where ( } } } ) denotes an average over the ensemble of realizations,

2F=&;&1 ln(Z1 �Z0) (52)

is the free energy difference between the initial and final equilibrium states
of the system, and the Z's are the associated partition functions:

Z*=| dz exp[&;H �
* (z)] (53)

Equation (51) was originally derived using a Hamiltonian formulation, (21)

but has also been shown to be valid under explicitly non-Hamiltonian
evolution��including the Nose� �Hoover thermostating scheme, (21, 22)

Markov-chain dynamics, (22�24) and Langevin evolution(22, 25)��and has
been generalized to a wider class of thermodynamic processes.(18, 23, 26, 27)

[Equation (51) can be viewed as an extension, to irreversible pro-
cesses, of the relation W=2F, which holds for a reversible, isothermal
process from one equilibrium state to another. Furthermore, it immediately
implies the inequality (W )�2F, in agreement with the second law of
thermodynamics, and places an exponentially decaying upper bound on the
probability of observing finite-size violations of the second law:(26)

Prob(W�2F&X )�e&X�kBT (54)]

Let us now derive Eq. (51) from the detailed fluctuation theorem
obtained in the present paper, following a line of reasoning similar to that
presented by Crooks(23) for the case of Markov evolution.

Let 6+ be a process involving a system of interest, �, a single reser-
voir, % (prepared at temperature T ), and a work parameter * which is
varied from *(0)=0 to *({)=1. During a single realization of this process,
the work W performed on � is given by

W=2E&Q (55)
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where 2E is the net change in the internal energy of �, and Q (Eq. (8)) is
the heat absorbed by � from the reservoir. Following the notation of pre-
vious sections, let zA and zB denote the initial and final microstates of �,
and 2S the entropy generated, for a given realization. Since Q=&T } 2S
(Eq. (2)), the value of W can be expressed as a function of zA , zB , and 2S:

W(zA , zB , 2S)=H �
*=1(zB)&H �

*=0(zA)+T } 2S (56)

Assuming a canonical distribution of initial conditions, we can construct
the ensemble average of exp(&;W ) as follows:

(exp(&;W ))=| dzA
1

Z0

exp[&;H �
*=0(zA)] | dzB

_| d(2S) P+(zB , 2S | zA) exp(&;W ) (57)

Invoking Eqs. (4) and (56) allows us to rewrite this as:

(exp(&;W )) =
1

Z0
| dzA exp[&;H �

*=1(zB)] | dzB

_| d(2S) P&(z*A , &2S | z*B) (58)

=
1

Z0
| dzB exp[&;H �

*=1(zB)] (59)

=
Z1

Z0

=exp(&;2F ) (60)

as promised.
Note that Eq. (8) of ref. 28 can be viewed as a special case of Eq. (51)

above, for the situation in which the initial and final Hamiltonian functions
are the same: H*=0(z)=H*=1(z), hence the free energy difference is identi-
cally zero: 2F=0.

VI. DISCUSSION

The motivation for this paper has been a belief that one ought to be
able to derive the fluctuation theorem��or something like it��within the
framework of traditional statistical mechanics; that is, by contemplating a
system of interest interacting with a thermal environment. The central
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result of this exercise, Eq. (4), is a detailed fluctuation theorem, valid for
finite times and made without reference to a steady state. Given the defini-
tions and assumptions made in this paper, Eq. (4) is identically true. We
now briefly address a number of issues related to this result.

The first involves the definition of 2S. Specifying what is meant by the
entropy generated during a single realization of a given process is
inherently problematic, since entropy, in statistical mechanics, is ordinarily
associated with an ensemble of microstates. Equation (2) must therefore be
regarded as constituting a particular choice of definition of 2S. This choice,
however, is not entirely arbitrary, but rather (as indicated in Section II)
guided by macroscopic thermodynamics, where the entropy increase of a
thermal environment is identified with the heat, per unit temperature,
absorbed by that environment.

There is another apparently troubling feature of the definition of
entropy generated: to compute 2S, it seems we must know the exact initial
and final microstates of each reservoir (Eq. (8)). This is extremely
unsatisfying, as it conflicts with the usual notion of a thermal environment
as a huge collection of unmonitored (and uninteresting) degrees of freedom
``out there.'' However, one can infer the Qn values by monitoring the
evolution of only those environmental degrees of freedom which are at any
moment interacting (exchanging energy) with the system of interest. There-
fore if, due to short-range interaction forces, the exchange of energy
between � and the % 's occurs locally��say, at an interface��then 2S can be
computed by knowing only what goes on in the immediate vicinity of the
system of interest (e.g., within boundary layers of width r in Fig. 1), without
explicit knowledge of initial and final reservoir energies. Thus, while Eq. (8)
is indisputably useful as a device in the derivation of the detailed fluctua-
tion theorem, that final result is really a statement about � and the heat
fluxes into and out of �, rather than one about � and initial and final
reservoir energies.

Finally, there is a bit of arbitrariness even in the definition of the heat
absorbed by a given reservoir (Eq. (8)), owing to the small but finite inter-
action energy hint . As with Eq. (2), this definition represents a particular
choice, but again this choice is consistent with macroscopic thermo-
dynamics.

The derivation presented in Section III explicitly assumes that the
reservoir degrees of freedom are initially sampled canonically (Eq. (9)). The
result itself, however, might not depend as strongly on this assumption as
the derivation suggests. For macroscopically large reservoirs, Eq. (4) ought
to remain valid, at least to an excellent approximation, if the initial reser-
voir conditions are sampled from microcanonical, rather than canonical,
distributions. The argument for this is similar to the usual one for the
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equivalence of microcanonical and canonical averages in the thermo-
dynamic limit, and goes roughly as follows. Imagine constructing a joint,
conditional probability distribution

P� (zB , 2S | zA) (61)

defined in the same way as P(zB , 2S | zA), but with reservoir initial condi-
tions sampled from microcanonical distributions. In this case the tem-
peratures Tn appearing in the definition of 2S are the ``microcanonical
temperatures'' of the heat reservoirs:

(kBT )&1=
�

�E
ln | dy $[E&H % (y)] (62)

P� depends on the set of initial reservoir energies, just as P depends on the
initial reservoir temperatures. Explicitly, we can write

P� =P� =1 } } } =N(zB , 2S | zA), P=PT1 } } } TN(zB , 2S | zA) (63)

where =n denotes the known initial energy per particle (alternatively, per
degree of freedom) of the n th reservoir: =n=En �&n , where En is the initial
energy of, and &n the number of particles constituting, the n th reservoir.
Since the &n 's are fixed, the initial microcanonical ensemble of each reser-
voir is uniquely specified by the value of =n . Now, PT1 } } } TN can be expressed
as a weighted average of P� =1 } } } =N :

PT1 } } } TN(zB , 2S | zA)=_ `
N

n=1
| d=n wn(=n ; Tn)& P� =1 } } } =N(zB , 2S | zA) (64)

where wn(=n ; Tn) is the statistical weight of the microcanonical ensemble at
energy-per-particle =n , within the canonical ensemble at temperature Tn ,
for the n th reservoir.3 In the thermodynamic limit of arbitrarily large reser-
voirs (&n � �, with extensive and intensive quantities scaled appropriately),
wn(=n ; Tn) becomes peaked arbitrarily sharply around the value =n(Tn)
whose corresponding ``microcanonical temperature'' is equal to Tn . Assum-
ing as in Section IV that P� converges to a well-defined function of zA , zB ,
and 2S, we will therefore get, in the thermodynamic limit,

PT1 } } } TN(zB , 2S | zA)=P� =1(T1) } } } =N (TN )(zB , 2S | zA) (65)

resulting in a microcanonical detailed fluctuation theorem.
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More generally, we expect Eq. (4) to remain valid, provided that each
reservoir is prepared in what would be characterized at the macroscopic
level as a state of thermodynamic equilibrium (regardless of whether the
method of preparation truly yields a canonical distribution of microstates
when carried out repeatedly). This reflects a strong prejudice that the
canonical ensemble should be viewed primarily as a computational con-
venience, and ought not to be taken too seriously as characterizing the
``true'' statistical distribution of microstates of entire macroscopic bodies.
Of course, all this presupposes macroscopically large heat reservoirs; for
microscopic ``reservoirs,'' the detailed fluctuation theorem still holds, but its
validity then depends on a literal interpretation of Eq. (9).

Another issue involves the assumption of time-reversal invariance,
Eq. (5). While this assumption was made for convenience, it is straight-
forward to generalize the analysis to the situation in which (possibly time-
dependent) magnetic fields are present. In that case, given a process 6+,
its time-reversed counterpart 6& is obtained by carrying out the protocol
in reverse order, while also reversing all magnetic fields: B(t) � &B({&t).
With this modification, Eq. (4) remains valid (see also refs. 18, 28, and 29).

The derivation of the detailed fluctuation theorem presented in this
paper is admittedly not as ``clean'' as in previous works, (1�19) where the
(deterministic or stochastic) thermostating is accomplished without the
explicit introduction of reservoir degrees of freedom. For instance, the pre-
sent treatment forces us to consider the unphysical limit of infinite reser-
voirs; caveats need to be made about ignoring interaction energies; the time
t=0 is privileged (since that is when the reservoir microstates are sampled
canonically); and so forth. There is some consolation, however, in knowing
that these messy issues are likely to arise in any laboratory setting, where
real thermal environments and finite times of observation are an inherent
part of the game.

Nose� �Hoover-type thermostating schemes(32)��employing one or a
handful of ``reservoir'' degrees of freedom (and non-Hamiltonian equations
of motion)��might offer an interesting middle ground between the deter-
ministic thermostats of refs. 1�14 and the approach taken here. In the
original Nose� �Hoover scheme, the reservoir degree of freedom (`) is
initially sampled from a Gaussian distribution. Therefore, given an
appropriate definition of 2S, it would be straightforward to define a joint,
conditional probability distribution P(zB , 2S | zA), as in this paper, basi-
cally replacing the canonical distribution of initial reservoir conditions in
Eq. (11) by the Gaussian distribution of initial values of `. It would be
interesting to see whether a detailed fluctuation theorem then follows.
If so, this approach might lead (by arguments along the lines of Sec-
tion IV) to a Nose� �Hoover steady-state fluctuation theorem. Presumably
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some chaoticity assumption would still be required to make this result
rigorous, but at least there would be no need to worry about infinitely
large reservoirs!

Finally, it would be very nice to come up with a laboratory experi-
ment to test the main result derived in this paper. The system of interest in
such an experiment would doubtless have to have very few degrees of
freedom (ideally, only one), in order to collect data with sufficiently good
statistics in a reasonable amount of time. Furthermore, one would want a
process during which the typical entropy generated is not much greater
than kB ; otherwise, prohibitively many realizations would be needed before
observing a single one for which 2S<0. In this respect, the fact that
Eq. (4) is valid for finite durations { is helpful.
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